Microtubule assembly during mitosis - from distinct origins to distinct functions?
نویسندگان
چکیده
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
منابع مشابه
Membrane-based mechanisms of mitotic spindle assembly
Chromosome segregation during mitosis is mediated by the mitotic spindle. Formation of this microtubular structure relies on distinct processes such as microtubule nucleation and growth and the consequent focusing of these filaments into spindle poles. Here, we discuss our recent finding that a size-exclusion spindle envelope promotes mitotic fidelity in Drosophila cells in light of distinct sp...
متن کاملMitosis-specific regulation of nuclear transport by the spindle assembly checkpoint protein Mad1p.
Nuclear pore complexes (NPCs) and kinetochores perform distinct tasks, yet their shared ability to bind several proteins suggests their functions are intertwined. Among these shared proteins is Mad1p, a component of the yeast spindle assembly checkpoint (SAC). Here we describe a role for Mad1p in regulating nuclear import that employs its ability to sense a disruption of kinetochore-microtubule...
متن کاملAn epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis
The evolutionary conserved NSL complex is a prominent epigenetic regulator controlling expression of thousands of genes. Here we uncover a novel function of the NSL complex members in mitosis. As the cell enters mitosis, KANSL1 and KANSL3 undergo a marked relocalisation from the chromatin to the mitotic spindle. By stabilizing microtubule minus ends in a RanGTP-dependent manner, they are essent...
متن کاملNew frontiers: discovering cilia-independent functions of cilia proteins.
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and...
متن کاملThe roles of microtubule-based motor proteins in mitosis
Kinesins and dyneins play important roles during cell division. Using RNA interference (RNAi) to deplete individual (or combinations of) motors followed by immunofluorescence and time-lapse microscopy, we have examined the mitotic functions of cytoplasmic dynein and all 25 kinesins in Drosophila S2 cells. We show that four kinesins are involved in bipolar spindle assembly, four kinesins are inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 125 Pt 12 شماره
صفحات -
تاریخ انتشار 2012